skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Xiaoyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The concept that proteins are selected to fold into a well-defined native state has been effectively addressed within the framework of energy landscapes, underpinning the recent successes of structure prediction tools like AlphaFold. The amyloid fold, however, does not represent a unique minimum for a given single sequence. While the cross-βhydrogen-bonding pattern is common to all amyloids, other aspects of amyloid fiber structures are sensitive not only to the sequence of the aggregating peptides but also to the experimental conditions. This polymorphic nature of amyloid structures challenges structure predictions. In this paper, we use AI to explore the landscape of possible amyloid protofilament structures composed of a single stack of peptides aligned in a parallel, in-register manner. This perspective enables a practical method for predicting protofilament structures of arbitrary sequences: RibbonFold. RibbonFold is adapted from AlphaFold2, incorporating parallel in-register constraints within AlphaFold2’s template module, along with an appropriate polymorphism loss function to address the structural diversity of folds. RibbonFold outperforms AlphaFold2/3 on independent test sets, achieving a mean TM-score of 0.5. RibbonFold proves well-suited to study the polymorphic landscapes of widely studied sequences with documented polymorphisms. The resulting landscapes capture these observed polymorphisms effectively. We show that while well-known amyloid-forming sequences exhibit a limited number of plausible polymorphs on their “solubility” landscape, randomly shuffled sequences with the same composition appear to be negatively selected in terms of their relative solubility. RibbonFold is a valuable framework for structurally characterizing amyloid polymorphism landscapes. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  2. Abstract Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring 1 . Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen 2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils 1,4–6 . The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S -locus cysteine-rich protein/ S -locus protein 11 (SCR/SP11) 2,3 or a signal from UI pollen binds to the SI female determinant S -locus receptor kinase (SRK) 2,3 , recruits FERONIA (FER) 7–9 and activates FER-mediated reactive oxygen species production in SI stigmas 10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class 12–14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops. 
    more » « less
  3. Abstract Nanoelectronic devices based on ferroelectric domain walls (DWs), such as memories, transistors, and rectifiers, have been demonstrated in recent years. Practical high‐speed electronics, on the other hand, usually demand operation frequencies in the gigahertz (GHz) regime, where the effect of dipolar oscillation is important. Herein, an unexpected giant GHz conductivity on the order of 103S m−1is observed in certain BiFeO3DWs, which is about 100 000 times greater than the carrier‐induced direct current (dc) conductivity of the same walls. Surprisingly, the nominal configuration of the DWs precludes the alternating current (ac) conduction under an excitation electric field perpendicular to the surface. Theoretical analysis shows that the inclined DWs are stressed asymmetrically near the film surface, whereas the vertical walls in a control sample are not. The resultant imbalanced polarization profile can then couple to the out‐of‐plane microwave fields and induce power dissipation, which is confirmed by the phase‐field modeling. Since the contributions from mobile‐carrier conduction and bound‐charge oscillation to the ac conductivity are equivalent in a microwave circuit, the research on local structural dynamics may open a new avenue to implement DW nano‐devices for radio‐frequency applications. 
    more » « less